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1. Introduction 

NoSQL data stores, such as Accumulo/Hadoop,1,2 MongoDB,3 and Elasticsearch,4 
are highly recognized for their ability to easily scale and store vast amounts of 
information in ways that a traditional relational database management system 
(RDBMS)5 cannot. When considering a migration from an RDBMS to NoSQL, a 
thoughtful, fact-based analysis should be used, just as when any other critical, core 
architectural component is changed. In this report, we evaluate Hadoop, MongoDB, 
and Elasticsearch as a replacement for RDBMS data storehouse in our custom 
intrusion detection system (IDS). In this particular use case, the number of records 
is voluminous and the records contain semi-structured data6 of varying data types. 
The workload is varied, and both across-the-board analytics and surgical queries 
must be supported. 

During research and development, our in-house architected, built, and deployed 
IDS used Oracle Database7 as the RDBMS component. Through the use of various 
features such as table partitioning and bitmap indexes, Oracle Database scaled and 
performed well. However, licensing and support costs have continued to increase 
over the years, driving a desire to find a less-costly solution. After examining 
available options, the open-source database PostgreSQL8 was chosen as a potential 
replacement. PostgreSQL offered several architectural similarities to Oracle 
Database that, prior to actual testing, we believed might allow it to scale to handle 
the projected data and workloads. A research project was performed and a report9 
was written that, although not quite a perfect apples-to-apples comparison, 
provided us with sufficient confidence to move forward with our migration plan.   

Several years have passed since the successful migration to PostgreSQL; data 
volumes have continued to increase and it is again time to review options to replace 
PostgreSQL with a component that will allow easier and more cost-effective 
scaling. In addition, new techniques for detecting malicious and potentially 
malicious attacks in our data are being developed that will require more efficient 
access to our raw data and better access to computational resources. We believe 
that the features and capabilities provided by a NoSQL solution will better meet 
our needs, but this requires due diligence and evaluation to select the best option 
for our current as well as future use case. 

2. Background 

Hadoop and MongoDB, classified as key-value and document-oriented NoSQL 
solutions, respectively, are both recognized as the most popular within their 
respective classifications.10 Elasticsearch is similar to MongoDB and is classified 
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as a document-oriented NoSQL solution. Although all offer excellent scalability 
and performance, the correct one that will maximize performance over the long 
term for our specific environment and use case when handling huge amounts of 
data needs to be carefully considered. Key factors that should be included in the 
decision-making process include the following: 

• Are the data structured, semi-structured, or unstructured? 

• Once inserted, what are the primary operations (transactions) that will be 
performed—analytical iterations across all or large parts of the data, queries 
to pull a few specific records at a time, or a combination of both? 

In our environment, the largest set of data is semi-structured. Although much of the 
information we collect is highly structured, the largest portion of any given record 
is an unstructured, binary-type blob. With regard to the daily operational use of the 
collected data, the current majority of operations occurring after the data are 
inserted are primarily targeted queries. However, in the future, it is expected that 
new tools will be developed that will perform analytics across vast numbers of 
records, making its use more of a hybrid analytic-transactional system. 

3. Yahoo! Cloud Serving Benchmark (YCSB) 

3.1 Data Loading and Performance Testing Framework 

When originally setting out to perform the research and experiments to determine 
the best NoSQL solution for our environment, the expectation was that we would 
need to build our own data loading and performance testing framework. While 
performing literature research to review work performed by others in this area, we 
discovered a paper11 that referred to a data loading and performance testing 
framework, Yahoo! Cloud Serving Benchmark (YCSB).12 This framework is freely 
available and, if proven sufficient for our testing, it would greatly reduce our startup 
work on this research. 

At first, YCSB was thought to come very close to matching our needs, but it lacked 
one important item—the ability to create semi-structured data shaping during initial 
loading that matched closely enough to our expected data layout to provide us with 
results, thus allowing us to confidently make a decision. While digging deeper into 
YCSB’s documentation and code, a fieldlengthhistogram configuration 
parameter was discovered. This parameter, although apparently not as popular to 
use (based on a lack of references in publications), allows a user to specify a 
specially crafted histogram file as input to shape the data generated for each 
individual record used to populate the data store being tested. 
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The first set of tests performed to determine the suitability of 
fieldlengthhistogram looked very promising. However, we quickly 
discovered that in adjusting the workload and histogram input file parameters, the 
data shaping we required was an edge case not directly supported by the provided 
implementation. Analysis of the algorithm supplied in HistogramGenerator. 
java confirmed that our edge case could not be effectively tuned, and a 
replacement HistogramGenerator.java file that worked specifically for our 
needed data shaping was easily developed and tested.   

Note: To use YCSB, several additional packages were needed that are not natively 
included with version 6.8 of Red Hat Enterprise Linux (RHEL). Individuals trying 
to recreate the experiments or set up their environment for running their own 
experiments will need to install Apache Maven13 (a tool used for making the 
software build process easier) and Python14 (a popular scripting language), version 
2.7.x or greater. 

3.2 Sharded Table Support 

In a real-world deployment, it is highly likely that large table(s) storing data will be 
sharded (partitioned) to facilitate faster querying. Although YCSB will dynamically 
create the table, it will not generate and execute the necessary commands to shard 
a table if the NoSQL data store being tested does not automatically perform 
sharding. When we searched the web, we found others with an interest in 
performance testing against a sharded table, but there were no sample 
configurations or methodologies on ways to actually execute it.   

Through testing MongoDB, however, we discovered a methodology that would 
allow us to shard the table YCSB would use, even though YCSB would not directly 
shard the table itself. These procedures are as follows: 

1. Properly configure YCSB and launch it to start the initial data load. 

2. Stop YCSB after a few records have been inserted. 

3. Delete the data from the table YCSB created. 

4. Shard the table within the MongoDB environment. 

5. Use YCSB to perform the initial data load. 

These steps leverage YCSB for the initial creation of the table it will load and test 
against. We discovered that YCSB will not drop the table if it already exists. 
Moreover, we simply needed to remove any loaded data, shard the table, and restart 
the initial data loading. Due to the inability to control which fields are used for what 
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purposes during performance testing, sharding was performed on the “_id” field 
in MongoDB. Although not necessarily an ideal match to real-world use, it did 
allow us to evenly distribute the initial data load across all shards.   

For Accumulo/Hadoop and Elasticsearch, the technique (described previously) to 
create a properly sharded table was not needed. In both cases, the table was 
automatically sharded due to the way these NoSQL servers natively operate; 
namely, once their software is configured for sharding, any newly created tables 
are automatically sharded across the available data nodes. 

3.3 Workload Configuration 

When using YCSB, a configuration file is used that contains values to define the 
workload with which to test. By defining the parameters of a workload, we model 
the usage pattern of the performance tests to match what the real-world usage would 
be. The definition of workload used for performance testing was as follows: 

• Initially populate the NoSQL data store with 100,000,000 records before 
performance testing. Although this amount is not close to the number of 
records expected in our environment, given the available hardware for each 
data node and the number of available nodes, it would provide a large 
enough record set to see how various operations would perform and prove 
sufficiently large enough to show any performance differences between the 
NoSQL solutions being tested. 

• Perform 8,000,000 transactions. This number was chosen because it would 
mimic the constant, high-volume usage expected in our type of environment 
and the usage pattern over an extended period of time. In addition, by 
executing a significant number of transactions, any caching of data 
performed by the hardware, operating system, and data store should be 
thoroughly used and regularly refreshed. The configuration of transactions 
for the workload during testing consisted of the following: 

○ 10% reads 

○ 20% updates 

○ 50% inserts 

○ 10% read-modify-writes 

○ 10% scans (maximum number of records to access set to 1,000) 

• A single table, modeled after a real-world design, consisting of the 
following: 
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○ 32 fields of different capacity: 

 30 of small capacity (random size between 1 and 10 bytes) 

 1 of medium capacity (random size between 1 and 512 bytes) 

 1 of large capacity (random size between 1 and 1,024 × 5 bytes) 

It is interesting to note that YCSB does not support record deletion as part of the 
workload modeling. One of the 4 operations used in typical persistent storage 
operations (typically referred to as “CRUD”15) is the ability to delete data. 
Depending on usage, deletion of data typically falls into one of 2 general categories: 
deletion of individual records one at a time or bulk deletion of large quantities of 
records. Although it is not surprising that bulk deletion, typically done on an entire 
shard (partition) of data, is not supported because YCSB does not directly support 
sharded table creation, it is a bit surprising that individual record deletion support 
is missing.   

Deleting records can have varying degrees of performance impact depending on 
how a data store handles the physical deletion process. Some data stores will not 
reuse freed space within a file on disk, requiring a maintenance action to be 
performed that compacts the file. This compaction may or may not be performed 
on a live system, which impacts availability, especially in 24/7 operational 
environments. Other data stores use custom structures within the data files storing 
the records on disk, allowing them to mark specific parts of a file as available for 
reuse. Depending on how the data store writes new records into these newly 
available slots, it may cause individual records to be written in a fragmented manner 
or leave small, unused areas within the file. Unusable space within the file will 
cause the data files to artificially inflate, possibly forcing multiple physical read 
operations for fragmented records or deeper seeks into a file than would be 
normally necessary if the disk space was freed by compaction. 

YCSB generates statistics for both of the workload commands: load and run. 
Although loading data are highly important to our environment, we are more 
interested in overall performance, because the NoSQL solution operates when it is 
fully loaded with records. The statistics YCSB generates during initial data load 
were collected but not included in this report. The statistics generated during each 
run for each NoSQL solution are included in the Appendixes. 

4. Hardware Configuration 

For testing all NoSQL configurations, the following hardware was used with 
RHEL, version 6.8, and all recent RHEL patches were applied: 
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• 1 Dell PowerEdge R710 server 

○ One 2.26-GHz Xeon 4 Core central processing unit (CPU) 

○ Two 250-GB, 7,200-RPM SATA drives 

○ Four 1-TB, 7,200-RPM SATA drives 

○ Eight 4-GB memory sticks (32 GB total) 

○ RHEL, version 6.8 

○ Use: 

 YCSB 

 MongoDB, Accumulo/Hadoop, and Elasticsearch “master” server 

• 4 Dell PowerEdge R420 servers 

○ Two 2.2-GHz Xeon E5-2430 6 Core CPU 

○ Four 2-TB, 7,200-RPM SATA Drives 

 PERC H710 mini configured for hardware-based redundant array of 
independent disks (RAID)-0 across all drives 

○ Eight 16-GB memory sticks (128 GB total) 

○ RHEL, version 6.8 

○ Use: 

 MongoDB, Accumulo/Hadoop, and Elasticsearch sharded data 
nodes 

5. MongoDB 

5.1 Configuration 

MongoDB, version 3.2.7, the most recent version available at the time, was 
obtained from MongoDB’s download website16 and used for performance testing. 
The Dell R710 was used as the master node, running both the Config Server and 
Query Router portions of MongoDB, as well as YCSB for both initial data loading 
and workload performance testing. In an ideal situation, YCSB would have been 
installed and run from another server so as not to impact the performance. Due to 
the limited availability of hardware for testing and the light load MongoDB’s 
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Config Server and Query Router would place on the Dell R710, it was deemed 
acceptable to collapse the preferred setup onto this single server (Fig. 1). 

 

Fig. 1 MongoDB configuration 

The remaining servers, all Dell R420s, were reserved as data nodes for storing the 
synthesized records generated by YCSB. These servers were configured for a 
sharded setup, similar to what would be expected in our production environment. 
Replication, which would provide data redundancy (similar to a RAID), was not 
enabled due to the limited availability of hardware. 

5.2 Performance Experiment and Results 

Four performance runs using YCSB were executed against fresh, initial data loads. 
The statistics generated by YCSB from each performance run were collected and 
then analyzed. MongoDB’s overall throughput (Fig. 2) was consistent between 
performance runs, peaking at 152 transactions per second and bottoming out at 142 
transactions per second, a range of approximately 9%. There is no known cause for 
the overall throughput performance variance; however, if future study is performed 
as outlined in Section 10, the use of additional performance tracking tools may 
reveal the cause. Similar to the other NoSQL solutions tested, MongoDB released 
all disk space used when the table being used for testing was dropped between 
performance runs.  

MongoDB Master Node (Dell R710) 
• Config Server 
• Query Router 
• YCSB 

MongoDB Data Nodes (Dell R420) 
• Sharded Configuration 
• No Replication 
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Fig. 2 MongoDB throughput 

When comparing average latencies between various transaction types within 
MongoDB, the results shown in the graph (Fig. 3) are not unexpected. All of the 
transactions related to small, discrete-type transactions are very tightly grouped at 
the bottom of the graph due to low, average latencies (lower latency is better). 
MongoDB is designed more for a transactional-type environment rather than 
environments solely performing analytics, which require retrieving and processing 
huge numbers of records. In a transactional-type environment, such as backing a 
highly responsive website, small data requests must be served instantaneously. 
Based on the results from performance testing with YCSB, MongoDB’s strongest 
performance appears to be in smaller, discrete transactions rather than running 
analytics across large data sets. 

 

 

 

 

 

 

 

 

 

Fig. 3 Comparison of average latencies within MongoDB 
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6. Accumulo/Hadoop 

6.1 Configuration 

Hadoop, version 2.7.1;17 Zookeeper (a required dependency for Accumulo), 
version 3.4.6;18 and Accumulo, version 1.7.0,19 were downloaded from their 
respective project sites and used for performance testing. The Dell R710 was used 
as the master node for all 3 services, as well as YCSB, for both initial data loading 
and workload performance testing. In an ideal situation, YCSB would have been 
installed and run from another server so as not to impact the performance. Due to 
the limited availability of hardware for testing, it was deemed acceptable to collapse 
the preferred setup onto this single server (Fig. 4). 

 

 
Fig. 4 Accumulo/Hadoop configuration 

The remaining servers, all Dell R420s, were reserved as data nodes for storing the 
synthesized records generated by YCSB. These servers were configured for a 
sharded setup, similar to what would be expected in our production environment. 
Replication, which would provide data redundancy (similar to RAID), was not 
enabled due to the limited availability of hardware. 

6.2 Performance Experiment and Results 

Four performance runs were initiated, and the statistics generated by YCSB were 
collected for analysis after each run. Similar to the other NoSQL solutions tested, 
the initial run was performed on a pristine installation, and subsequent runs were 
performed after the table created by YCSB for testing was dropped (Fig. 5). 

Accumulo, Hadoop and Zookeeper Master Node (Dell R710) 
• Hadoop master 
• Zookeeper master 
• Accumulo master 
• YCSB 

Accumulo and Hadoop Data Nodes (Dell R420) 
• Sharded Configuration 
• No Replication 
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Fig. 5 Accumulo/Hadoop throughput 

Hadoop’s performance was consistent throughout all 4 performance tests. The 
variance between the highest throughput (62) and lowest throughput (50) was 19%. 
The consistently lower throughput after the initial performance indicates that 
Hadoop will perform slightly better on fresh, previously unused instances than it 
will when the environment is reused, even though tables and data were removed 
between performance tests. 

Similar to MongoDB, Hadoop’s latencies are very, very close (Fig. 6) for all 
transaction types except scans, which had the highest latencies. The latencies for 
non-scan transactions are so close that the latency lines for several transaction types 
are masked in the graph by others. Scan latencies are much higher, which is not 
unexpected due to the larger number of records being processed during that type of 
transaction. 

 

Fig. 6 Comparison of average latencies within Accumulo/Hadoop 

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

1 2 3 4

M
ic

ro
se

co
nd

s

Performance Run

Accumulo/Hadoop Average Latencies

Read

Read-Modify-Write

Insert

Update

Scan

0

20

40

60

80

1 2 3 4

O
pe

ra
tio

ns
 P

er
 S

ec
on

d

Performance Run

Accumulo/Hadoop Overall 
Throughput



 

11 
 

7. Elasticsearch 

7.1 Configuration 

Elasticsearch, version 2.2.0, the most recent version available at the time, was 
obtained from Elasticsearch’s download website20 and used for performance 
testing. The Dell R710 was used as the master node, acting as the master 
Elasticsearch server, as well as YCSB, for both initial data loading and workload 
performance testing. In an ideal situation, YCSB would have been installed and run 
from another server. Due to the limited availability of hardware for testing, and the 
light load the Elasticsearch server process would place on the Dell R710, it was 
deemed acceptable to collapse the preferred setup onto this single server (Fig. 7). 

 

 

Fig. 7 Elasticsearch configuration 

The remaining servers, all Dell R420s, were reserved as data nodes for storing the 
synthesized records generated by YCSB. These servers were configured for a 
sharded setup, similar to what would be expected in our production environment. 
Replication, which would provide data redundancy (similar to RAID), was not 
enabled due to the limited availability of hardware. 

7.2 Performance Experiment and Results 

Four performance runs were initiated, and the statistics generated by YCSB were 
collected for analysis after each run (Fig. 8). Similar to the other NoSQL solutions 
tested, the initial run was performed on a pristine installation, and subsequent runs 
were performed after the table created by YCSB for testing was dropped. 

Elasticsearch Master Node (Dell R710) 
• Elasticsearch Master 
• YCSB 

Elasticsearch Data Nodes (Dell R420) 
• Sharded Configuration 
• No Replication 
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Fig. 8 Elasticsearch throughput 

Although Elasticsearch frees disk space when a table is dropped, an approximate 
23% performance decrease between the first and subsequent performance runs was 
observed on overall throughput. Based upon the individual statistics for each 
transaction type (available in the Appendixes), this performance decrease was not 
solely attributable to one specific transaction type that experienced a performance 
degradation on performance runs after the first execution. 

Figure 9 shows the increase in average latencies across all transaction types for 
performance. The largest contributors to the general drop in throughput 
performance are read-write-modify and scan transactions, whereas the remaining 
types of transactions show more modest latency increases. As expected, after 
pulling larger volumes of records, scan-type transactions showed the largest 
average latency. 

 

Fig. 9 Comparison of average latencies within Elasticsearch 
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8. Comparison of the Tested NoSQL Solutions 

As shown in Fig. 10, overall, the Elasticsearch and MongoDB performance was 
very similar to the simulated performance testing workload. However, 
Accumulo/Hadoop showed a significant increase in the amount of time executing 
the same workload compared with MongoDB and Elasticsearch. This performance 
difference is most likely due to YCSB’s workload simulator not leveraging 
Hadoop’s mapreduce capability for table scans, potentially causing a large increase 
in latency for that specific transaction type that may have been significantly reduced 
otherwise. 

 

Fig. 10 Simulated execution time comparison 

With regard to average throughput, both Elasticsearch and MongoDB showed more 
than twice the throughput as that of Accumulo/Hadoop. Again, Hadoop’s 
performance may have been hampered by the lack of leveraging mapreduce, which 
may significantly improve scan transactions (Fig. 11). 

 

Fig. 11 Performance comparison of Elasticsearch, MongoDB, and Accumulo/Hadoop 
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9. Conclusions 

Based on the statistics generated for the time taken to complete the simulated 
workloads and the average operations per second, both MongoDB and 
Elasticsearch appear to be generally well suited for our specific use case. Both 
NoSQL solutions completed the workloads in approximately the same amount of 
time and with approximately the same throughput. For our particular use case, 
Accumulo/Hadoop did not perform as well and most likely would not be a suitable 
solution due to the mixed use (backing web applications requiring fast response 
times for discrete data requests and analytics). 

Particularly interesting are the average latency statistics for each of the individual 
transaction types. For insert and update transactions, Elasticsearch had the highest 
latency by a wide margin. Although Elasticsearch’s performance was average for 
reads and read-modify-write transactions, its performance was notably better than 
the other NoSQL solutions in scans. Scan performance was so significantly faster 
for Elasticsearch that it made up for lesser performance in other areas to allow it to 
match MongoDB’s performance overall. 

10. Future Work 

Although every effort was made to create the best possible experimental design and 
execution, a few improvements that are not currently possible could be undertaken 
in the future. Although YCSB provided a solid framework for initial loading, 
testing generalized workloads and gathering statistics, a few improvements would 
have made each step align more closely with our real-world data sets and uses. For 
example, providing an existing table loaded with real data to generate the load 
model would have resulted in an initial data load that mimics the real world, 
including the actual data types, instead of using random text-based data across the 
board. Coupled with real-world data, real-world queries could be gathered from the 
existing production environment, analyzed, and then used for generating the types 
of queries and data processing that currently exist. Both of these would improve the 
accuracy of the test results to get closer to what real-world performance may 
actually be when the system is deployed. These alterations to the schema would 
also facilitate the testing and impact of various indexing techniques, allowing better 
performance comparisons in better optimized configurations. 

Duplicating the workload performance testing with replication enabled would be 
highly informative. In addition to determining the performance impact enabling 
replication has within a specific NoSQL server, performance comparisons between 
the different NoSQL server solutions would be useful. Due to the techniques used 
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to implement replication, there is a likelihood that the performance comparisons 
seen in this report will be different when replication is enabled. Future 
experimentation in which additional hardware is available could also be performed 
with replication enabled and disabled to determine the performance impact on the 
NoSQL servers as they scale out. 

An additional improvement would be to monitor and collect individual node 
performance characteristics (CPU, memory, disk input/output use) using a tool such 
as Ganglia.21 Once any performance impact introduced by running a tool such as 
Ganglia is removed, the collected results would provide insight into how hard the 
tested NoSQL solutions are using available resources, providing an additional point 
for comparison rather than solely relying on raw transaction throughput statistics. 

During performance testing, all executions were performed with 10 concurrent 
YCSB threads running on the master node. Additional performance 
experimentation could be done to determine the optimum number of threads before 
performance of the NoSQL data store began to degrade. In real-world use, the 
number of connections to the data store can vary wildly as workloads shift 
throughout normal daily operations. Knowing the maximal number of connections 
before performance degrades against a known number of data nodes would be very 
useful to systems administrators for capacity planning. 
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Appendix A. Overall Average Latencies 
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The following charts (Fig. A-1 through A-5) compare the average latencies for each 
transaction type between the tested NoSQL solutions. 

 

Fig. A-1 Read-modify write average latency 

 

 
 

Fig. A-2 Insert average latency 
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Fig. A-3 Update average latency 

 

 

Fig. A-4 Scan average latency 

 

 

Fig. A-5 Read average latency  
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Appendix B. MongoDB Raw Performance Numbers  
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Statistic Perf Run 1 Perf Run 2 Perf Run 3 Perf Run 4 

OVERALLa 

Runtimeb 53589116 52397223 52498683 56177868 
Throughput 
(ops/sec) 149.2840449 152.6798472 152.3847751 142.4048346 

READ 

Operations 1600593 1599737 1601905 1601143 

Avg Latc 14655.49946 14989.27076 15009.2778 14729.48794 

Lat Varc 296200041.82 257119308.07 226897250.54 661175799.30 

Min Latc 510 546 504 507 

Max Latc 3052680 2282599 1563543 15346122 

95th Per Latb 32000 32000 32000 32000 

99th Per Latb 39000 39000 39000 39000 

Return 1600593 1599737 1601905 1601143 

READ-MODIFY-WRITE 

Operations 799740 800089 801564 799791 

Avg Latc 29129.69781 29822.38637 29736.23325 28990.01811 

Lat Varc 2057319877.21 1088404545.36 913569712.27 1032167145.38 

Min Latc 946 1051 973 892 

Max Latc 18943978 5037281 4641542 4234861 

95th Per Latb 63000 63000 63000 63000 

99th Per Latb 76000 76000 76000 76000 

CLEANUP 

Operations 10 10 10 10 

Avg Latc 639.7 853 925.9 713.4 

Lat Varc 3654856.81 6505905 7669401.49 4549125.24 

Min Latc 1 1 1 1 

Max Latc 6375 8505 9234 7112 

95th Per Latb 6000 8000 9000 7000 

99th Per Latb 6000 8000 9000 7000 

INSERT 

Operations 4000009 3999669 4000482 3997531 

Avg Latc 15259.00436 15532.29465 15502.30262 15376.04012 

Lat Varc 1329815744.56 750759403.10 817869519.89 711128877.11 

Min Latc 484 499 506 490 

Max Latc 19261144 5155493 11238529 7951853 

95th Per Latb 32000 32000 32000 32000 

99th Per Latb 39000 39000 39000 40000 

Return 4000009 3999669 4000482 3997531 

UPDATE 



 

25 
 

Operations 2399305 2400604 2399164 2400452 

Avg Latc 14691.12889 15038.06724 14953.64515 14537.20209 

Lat Varc 1146098647.51 671476718.65 595633461.28 551782098.48 

Min Latc 398 369 417 373 

Max Latc 19241419 5021646 10620600 7151262 

95th Per Latb 31000 32000 32000 32000 

99th Per Latb 39000 39000 39000 39000 

Return 2399305 2400604 2399164 2400452 

SCAN 

Operations 799833 800079 800013 800665 

Avg Latc 519284.4313 501173.3909 502323.5175 550773.376 

Lat Varc 284121264615.24 245142958209.89 257999567148.60 504905485224.05 

Min Latc 1374 1362 1339 1340 

Max Latc 9827641 9489587 13317476 40689574 

95th Per Latb N/A N/A N/A N/A 

99th Per Latb N/A N/A N/A N/A 

Return 799833 800079 800013 800665 
Abbreviations: Avg, average; Lat, latency; Max, maximum; MDB, MongoDB; Min, minimum; N/A, not 
available; ops/sec, operations per second; Per, percentile; Perf, performance; Var, Var. 
aBold italics represent category. 
bMilliseconds. 
cMicroseconds. 
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Appendix C. Elasticsearch Raw Performance Numbers  
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Statistic Perf Run 1 Perf Run 2 Perf Run 3 Perf Run 4 

OVERALLa 

Runtimeb 46341304.00 59290521.00 59756166.00 61435485.00 
Throughput 
(ops/sec) 172.6321728 134.9288194 133.8773977 130.2179026 

READ 

Operations 1600253 1600573 1600177 1600322 

Avg Latc 30797.95472 39466.02557 38883.62301 41537.75591 

Lat Varc 9788983140.10 13135376466.84 13055686446.52 13917133929.15 

Min Latc 400 354 345 359 

Max Latc 7244190 7655769 2024994 2644727 

95th Per Latb 169000 318000 312000 345000 

99th Per Latb 497000 545000 549000 563000 

Return 1600253 1600573 1600177 1600322 

READ-MODIFY-WRITE 

Operations 800821 800231 799266 800079 

Avg Latc 83013.28272 108396.7725 108325.9005 113227.5195 

Lat Varc 34191436625.70 46473986149.00 46867125986.38 49152908071.01 

Min Latc 2479 2485 2579 2498 

Max Latc 7380199 7832373 5023198 4992357 

95th Per Latb 508000 612000 618000 641000 

99th Per Latb 873000 943000 946000 958000 

CLEANUP 

Operations 10 10 10 10 

Avg Latc 15647.4 40373.2 15661.6 55854.3 

Lat Varc 122506987.64 1599941306.96 110821661.84 874308637.41 

Min Latc 8127 11639 7668 28509 

Max Latc 40946 122493 36765 117662 

95th Per Latb 40000 122000 36000 117000 

99th Per Latb 40000 122000 36000 117000 

INSERT 

Operations 3999358 3997985 4001346 4001160 

Avg Latc 40430.26769 52837.69079 53632.07123 54538.87128 

Lat Varc 14931073111.66 20271030187.45 20741229164.17 21088883919.97 

Min Latc 1420 1365 1471 1434 

Max Latc 7182325 7499094 4073622 5116669 

95th Per Latb 312000 440000 444000 448000 

99th Per Latb 635000 708000 716000 721000 

Return 3999358 3997985 4001346 4001160 

UPDATE 



 

29 
 

Operations 2401341 2400584 2398337 2398893 

Avg Latc 60741.95254 79113.22524 79031.09753 82390.33232 

Lat Varc 23828836120.88 32487312983.86 32719869613.18 34215699719.42 

Min Latc 1622 1677 1677 1657 

Max Latc 7250953 7816412 4914606 4981801 

95th Per Latb 459000 495000 498000 506000 

99th Per Latb 776000 851000 856000 868000 

Return 2401341 2400584 2398337 2398893 

SCAN 

Operations 799869 801089 799406 799704 

Avg Latc 132453.6022 159626.9182 162975.7695 164073.6762 

Lat Varc 40294829656.79 46396021364.21 47094888256.02 47787227419.25 

Min Latc 2026 2168 2048 2200 

Max Latc 8320897 7601090 2706485 5098816 

95th Per Latb 551000 597000 606000 611000 

99th Per Latb 815000 852000 857000 861000 

Return 799869 801089 799406 799704 
Abbreviations: Avg, average; Lat, latency; Max, maximum; Min, minimum; ops/sec, operations per second; 
Per, percentile; Perf, performance; Var, Var. 
aBold italics represent category. 
bMilliseconds. 
cMicroseconds. 
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Appendix D. Accumulo/Hadoop Raw Performance Numbers  
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Statistic Perf Run 1 Perf Run 2 Perf Run 3 Perf Run 4 

OVERALLa 

Runtimeb 127543725.00 159051237.00 140703245.00 140869092.00 
Throughput 
(ops/sec) 62.72358754 50.29825703 56.85725301 56.79031423 

READ 

Operations 1600457 1601363 1603507 1599383 

Ave Latc 119197.3758 216709.9007 182378.9185 157614.01 

Lat Varc 179313305208.40 399400795495.80 297794074059.09 254209719476.46 

Min Latc 1449 1858 1769 1911 

Max Latc 6953521 7760428 6854180 7081101 

95th Per Latb 125000 253000 212000 183000 

99th Per Latb     
Return 1600457 1601363 1603507 1599383 

READ-MODIFY-WRITE 

Operations 800519 801133 802723 800027 

Ave Latc 119114.2019 215888.3647 182022.1489 157289.8678 

Lat Varc 178702351818.39 396686487083.27 296608679889.01 253192022096.29 

Min Latc 1716 1867 2288 2076 

Max Latc 6953568 7760450 6854216 7081136 

95th Per Latb 125000 252000 212000 183000 

99th Per Latb     
CLEANUP 

Operations 10 10 10 10 

Ave Latc 9950.9 10421.7 9023.7 11724 

Lat Varc 19366610.89 16400429.41 8666881.61 200110545.40 

Min Latc 4999 4074 5012 3956 

Max Latc 18963 16231 14550 53849 

95th Per Latb 18000 16000 14000 53000 

99th Per Latb 18000 16000 14000 53000 

INSERT 

Operations 4001123 3999008 3996568 3998774 

Ave Latc 78.62225755 76.62617754 92.43922435 102.4986828 

Lat Varc 24422792.92 25885203.45 65993332.57 60300590.97 

Min Latc 10 10 10 11 

Max Latc 3709516 5109179 5966668 5939528 

95th Per Latb 0 0 0 0 

99th Per Latb 0 0 0 0 

Return 4001123 3999008 3996568 3998774 

UPDATE 
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Operations 2399758 2400425 2401898 2401903 

Ave Latc 16.12536639 20.9917223 22.51156169 15.24438705 

Lat Varc 13141745.30 47910420.31 47088780.57 12140842.87 

Min Latc 0 0 0 0 

Max Latc 3296180 6351485 6149367 3223248 

95th Per Latb 0 0 0 0 

99th Per Latb 0 0 0 0 

Return 2399758 2400425 2401898 2401903 

SCAN 

Operations 799181 800337 800750 799967 

Ave Latc 1354098.45 1550875.565 1389025.324 1442443.907 

Lat Varc 2928237791696.45 3211134761763.23 2842257166000.84 3084908137706.06 

Min Latc 14505 15932 17606 19061 

Max Latc 9063582 14027499 9224391 8223699 

95th Per Latb N/A N/A N/A N/A 

99th Per Latb N/A N/A N/A N/A 

Return 799181 800337 800750 799967 
Abbreviations: Avg, average; Lat, latency; Max, maximumMin, minimum; N/A, not available; ops/sec, 
operations per second; Per, percentile; Perf, performance; Var, Var. 
aBold italics represent category. 
bMilliseconds. 
cMicroseconds. 
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List of Symbols, Abbreviations, and Acronyms 

CPU central processing unit 

IDS intrusion detection system  

RAID redundant array of independent disks  

RDBMS relational database management system  

RHEL Red Hat Enterprise Linux  

YCSB Yahoo! Cloud Serving Benchmark  
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